对表格数据的预测是许多重要的下游任务中的必要和基本问题。但是,现有方法要么将表的数据实例独立作为输入而独立使用,要么不完全利用多排功能和标签来直接更改和增强目标数据表示。在本文中,我们建议1)从相关数据实例检索中构建一个超图,以建模这些实例的跨行和跨柱模式,以及2)执行消息传播以增强目标数据实例表示表格预测任务。具体而言,我们专门设计的消息传播步骤受益于1)在传播过程中融合标签和特征,以及2)局部感知的高阶特征交互。在两个重要的表格数据预测任务上进行的实验验证了所提出的PET模型与其他基线的优越性。此外,我们证明了模型组件的有效性以及通过各种消融研究和可视化的PET的特征增强能力。该代码包含在https://github.com/kounianhuadu/pet中。
translated by 谷歌翻译
最近的方法(例如材料gan)已使用无条件的gan来生成每像素材料图,或作为从输入照片重建材料之前的材料。这些模型可以生成各种随机材料外观,但没有任何将生成材料限制为特定类别或控制生成材料的粗体结构的机制,例如砖墙上的精确砖布局。此外,从单个输入照片中重建的材料通常具有伪像,并且通常不可易换,这限制了它们在实际内容创建管道中的使用。我们提出了Tilegen,这是一种针对SVBRDFS的生成模型,该模型特定于材料类别,始终可易换,并且在提供的输入结构模式上有条件。 Tilegen是Stylegan的变体,其架构经过修改以始终生成可易于的(周期性)材料图。除了标准的“样式”潜在代码外,Tilegen还可以选择拍摄条件图像,从而使用户直接控制材料的主要空间(和可选的颜色)功能。例如,在砖块中,用户可以指定砖布局和砖块,或者在皮革材料中,皱纹和褶皱的位置。我们的反渲染方法可以通过优化找到一种材料,从而感知到单个目标照片。这种重建也可以以用户提供的模式为条件。所得的材料是可拆卸的,可以大于目标图像,并且可以通过改变条件来编辑。
translated by 谷歌翻译
本文提出了一个紧凑的系统OpenPneu,以支持软机器人多腔的气动驱动。系统中使用微型泵来生成气流,因此不需要额外的输入,因为需要压缩空气。我们的系统执行模块化设计以提供良好的可扩展性,这已在具有十个空气通道的原型上证明。OpenPNEU的每个空气通道都配备了通货膨胀和通气功能,可提供从正到负的全范围压力供应,最大流速为1.7 L/min。我们的系统内置了对压力的高精度闭环控制,以实现稳定而有效的动态性能。提供了Python中的开源控制接口和API。我们还证明了OpenPneu在三个软机器人系统上的功能,最多10个腔室。
translated by 谷歌翻译
Benefiting from the intrinsic supervision information exploitation capability, contrastive learning has achieved promising performance in the field of deep graph clustering recently. However, we observe that two drawbacks of the positive and negative sample construction mechanisms limit the performance of existing algorithms from further improvement. 1) The quality of positive samples heavily depends on the carefully designed data augmentations, while inappropriate data augmentations would easily lead to the semantic drift and indiscriminative positive samples. 2) The constructed negative samples are not reliable for ignoring important clustering information. To solve these problems, we propose a Cluster-guided Contrastive deep Graph Clustering network (CCGC) by mining the intrinsic supervision information in the high-confidence clustering results. Specifically, instead of conducting complex node or edge perturbation, we construct two views of the graph by designing special Siamese encoders whose weights are not shared between the sibling sub-networks. Then, guided by the high-confidence clustering information, we carefully select and construct the positive samples from the same high-confidence cluster in two views. Moreover, to construct semantic meaningful negative sample pairs, we regard the centers of different high-confidence clusters as negative samples, thus improving the discriminative capability and reliability of the constructed sample pairs. Lastly, we design an objective function to pull close the samples from the same cluster while pushing away those from other clusters by maximizing and minimizing the cross-view cosine similarity between positive and negative samples. Extensive experimental results on six datasets demonstrate the effectiveness of CCGC compared with the existing state-of-the-art algorithms.
translated by 谷歌翻译
As one of the prevalent methods to achieve automation systems, Imitation Learning (IL) presents a promising performance in a wide range of domains. However, despite the considerable improvement in policy performance, the corresponding research on the explainability of IL models is still limited. Inspired by the recent approaches in explainable artificial intelligence methods, we proposed a model-agnostic explaining framework for IL models called R2RISE. R2RISE aims to explain the overall policy performance with respect to the frames in demonstrations. It iteratively retrains the black-box IL model from the randomized masked demonstrations and uses the conventional evaluation outcome environment returns as the coefficient to build an importance map. We also conducted experiments to investigate three major questions concerning frames' importance equality, the effectiveness of the importance map, and connections between importance maps from different IL models. The result shows that R2RISE successfully distinguishes important frames from the demonstrations.
translated by 谷歌翻译
Text clustering and topic extraction are two important tasks in text mining. Usually, these two tasks are performed separately. For topic extraction to facilitate clustering, we can first project texts into a topic space and then perform a clustering algorithm to obtain clusters. To promote topic extraction by clustering, we can first obtain clusters with a clustering algorithm and then extract cluster-specific topics. However, this naive strategy ignores the fact that text clustering and topic extraction are strongly correlated and follow a chicken-and-egg relationship. Performing them separately fails to make them mutually benefit each other to achieve the best overall performance. In this paper, we propose an unsupervised text clustering and topic extraction framework (ClusTop) which integrates text clustering and topic extraction into a unified framework and can achieve high-quality clustering result and extract topics from each cluster simultaneously. Our framework includes four components: enhanced language model training, dimensionality reduction, clustering and topic extraction, where the enhanced language model can be viewed as a bridge between clustering and topic extraction. On one hand, it provides text embeddings with a strong cluster structure which facilitates effective text clustering; on the other hand, it pays high attention on the topic related words for topic extraction because of its self-attention architecture. Moreover, the training of enhanced language model is unsupervised. Experiments on two datasets demonstrate the effectiveness of our framework and provide benchmarks for different model combinations in this framework.
translated by 谷歌翻译
An increasing number of public datasets have shown a marked clinical impact on assessing anatomical structures. However, each of the datasets is small, partially labeled, and rarely investigates severe tumor subjects. Moreover, current models are limited to segmenting specific organs/tumors, which can not be extended to novel domains and classes. To tackle these limitations, we introduce embedding learned from Contrastive Language-Image Pre-training (CLIP) to segmentation models, dubbed the CLIP-Driven Universal Model. The Universal Model can better segment 25 organs and 6 types of tumors by exploiting the semantic relationship between abdominal structures. The model is developed from an assembly of 14 datasets with 3,410 CT scans and evaluated on 6,162 external CT scans from 3 datasets. We rank first on the public leaderboard of the Medical Segmentation Decathlon (MSD) and achieve the state-of-the-art results on Beyond The Cranial Vault (BTCV). Compared with dataset-specific models, the Universal Model is computationally more efficient (6x faster), generalizes better to CT scans from varying sites, and shows stronger transfer learning performance on novel tasks. The design of CLIP embedding enables the Universal Model to be easily extended to new classes without catastrophically forgetting the previously learned classes.
translated by 谷歌翻译
Recent advances in self-supervised learning (SSL) in computer vision are primarily comparative, whose goal is to preserve invariant and discriminative semantics in latent representations by comparing siamese image views. However, the preserved high-level semantics do not contain enough local information, which is vital in medical image analysis (e.g., image-based diagnosis and tumor segmentation). To mitigate the locality problem of comparative SSL, we propose to incorporate the task of pixel restoration for explicitly encoding more pixel-level information into high-level semantics. We also address the preservation of scale information, a powerful tool in aiding image understanding but has not drawn much attention in SSL. The resulting framework can be formulated as a multi-task optimization problem on the feature pyramid. Specifically, we conduct multi-scale pixel restoration and siamese feature comparison in the pyramid. In addition, we propose non-skip U-Net to build the feature pyramid and develop sub-crop to replace multi-crop in 3D medical imaging. The proposed unified SSL framework (PCRLv2) surpasses its self-supervised counterparts on various tasks, including brain tumor segmentation (BraTS 2018), chest pathology identification (ChestX-ray, CheXpert), pulmonary nodule detection (LUNA), and abdominal organ segmentation (LiTS), sometimes outperforming them by large margins with limited annotations.
translated by 谷歌翻译
Due to their ability to offer more comprehensive information than data from a single view, multi-view (multi-source, multi-modal, multi-perspective, etc.) data are being used more frequently in remote sensing tasks. However, as the number of views grows, the issue of data quality becomes more apparent, limiting the potential benefits of multi-view data. Although recent deep neural network (DNN) based models can learn the weight of data adaptively, a lack of research on explicitly quantifying the data quality of each view when fusing them renders these models inexplicable, performing unsatisfactorily and inflexible in downstream remote sensing tasks. To fill this gap, in this paper, evidential deep learning is introduced to the task of aerial-ground dual-view remote sensing scene classification to model the credibility of each view. Specifically, the theory of evidence is used to calculate an uncertainty value which describes the decision-making risk of each view. Based on this uncertainty, a novel decision-level fusion strategy is proposed to ensure that the view with lower risk obtains more weight, making the classification more credible. On two well-known, publicly available datasets of aerial-ground dual-view remote sensing images, the proposed approach achieves state-of-the-art results, demonstrating its effectiveness. The code and datasets of this article are available at the following address: https://github.com/gaopiaoliang/Evidential.
translated by 谷歌翻译
In this tutorial paper, we look into the evolution and prospect of network architecture and propose a novel conceptual architecture for the 6th generation (6G) networks. The proposed architecture has two key elements, i.e., holistic network virtualization and pervasive artificial intelligence (AI). The holistic network virtualization consists of network slicing and digital twin, from the aspects of service provision and service demand, respectively, to incorporate service-centric and user-centric networking. The pervasive network intelligence integrates AI into future networks from the perspectives of networking for AI and AI for networking, respectively. Building on holistic network virtualization and pervasive network intelligence, the proposed architecture can facilitate three types of interplay, i.e., the interplay between digital twin and network slicing paradigms, between model-driven and data-driven methods for network management, and between virtualization and AI, to maximize the flexibility, scalability, adaptivity, and intelligence for 6G networks. We also identify challenges and open issues related to the proposed architecture. By providing our vision, we aim to inspire further discussions and developments on the potential architecture of 6G.
translated by 谷歌翻译